index.js (41819B)
1 (function(){ 2 3 // Copyright (c) 2005 Tom Wu 4 // All Rights Reserved. 5 // See "LICENSE" for details. 6 7 // Basic JavaScript BN library - subset useful for RSA encryption. 8 9 // Bits per digit 10 var dbits; 11 12 // JavaScript engine analysis 13 var canary = 0xdeadbeefcafe; 14 var j_lm = ((canary&0xffffff)==0xefcafe); 15 16 // (public) Constructor 17 function BigInteger(a,b,c) { 18 if(a != null) 19 if("number" == typeof a) this.fromNumber(a,b,c); 20 else if(b == null && "string" != typeof a) this.fromString(a,256); 21 else this.fromString(a,b); 22 } 23 24 // return new, unset BigInteger 25 function nbi() { return new BigInteger(null); } 26 27 // am: Compute w_j += (x*this_i), propagate carries, 28 // c is initial carry, returns final carry. 29 // c < 3*dvalue, x < 2*dvalue, this_i < dvalue 30 // We need to select the fastest one that works in this environment. 31 32 // am1: use a single mult and divide to get the high bits, 33 // max digit bits should be 26 because 34 // max internal value = 2*dvalue^2-2*dvalue (< 2^53) 35 function am1(i,x,w,j,c,n) { 36 while(--n >= 0) { 37 var v = x*this[i++]+w[j]+c; 38 c = Math.floor(v/0x4000000); 39 w[j++] = v&0x3ffffff; 40 } 41 return c; 42 } 43 // am2 avoids a big mult-and-extract completely. 44 // Max digit bits should be <= 30 because we do bitwise ops 45 // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) 46 function am2(i,x,w,j,c,n) { 47 var xl = x&0x7fff, xh = x>>15; 48 while(--n >= 0) { 49 var l = this[i]&0x7fff; 50 var h = this[i++]>>15; 51 var m = xh*l+h*xl; 52 l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); 53 c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); 54 w[j++] = l&0x3fffffff; 55 } 56 return c; 57 } 58 // Alternately, set max digit bits to 28 since some 59 // browsers slow down when dealing with 32-bit numbers. 60 function am3(i,x,w,j,c,n) { 61 var xl = x&0x3fff, xh = x>>14; 62 while(--n >= 0) { 63 var l = this[i]&0x3fff; 64 var h = this[i++]>>14; 65 var m = xh*l+h*xl; 66 l = xl*l+((m&0x3fff)<<14)+w[j]+c; 67 c = (l>>28)+(m>>14)+xh*h; 68 w[j++] = l&0xfffffff; 69 } 70 return c; 71 } 72 var inBrowser = typeof navigator !== "undefined"; 73 if(inBrowser && j_lm && (navigator.appName == "Microsoft Internet Explorer")) { 74 BigInteger.prototype.am = am2; 75 dbits = 30; 76 } 77 else if(inBrowser && j_lm && (navigator.appName != "Netscape")) { 78 BigInteger.prototype.am = am1; 79 dbits = 26; 80 } 81 else { // Mozilla/Netscape seems to prefer am3 82 BigInteger.prototype.am = am3; 83 dbits = 28; 84 } 85 86 BigInteger.prototype.DB = dbits; 87 BigInteger.prototype.DM = ((1<<dbits)-1); 88 BigInteger.prototype.DV = (1<<dbits); 89 90 var BI_FP = 52; 91 BigInteger.prototype.FV = Math.pow(2,BI_FP); 92 BigInteger.prototype.F1 = BI_FP-dbits; 93 BigInteger.prototype.F2 = 2*dbits-BI_FP; 94 95 // Digit conversions 96 var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; 97 var BI_RC = new Array(); 98 var rr,vv; 99 rr = "0".charCodeAt(0); 100 for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; 101 rr = "a".charCodeAt(0); 102 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 103 rr = "A".charCodeAt(0); 104 for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; 105 106 function int2char(n) { return BI_RM.charAt(n); } 107 function intAt(s,i) { 108 var c = BI_RC[s.charCodeAt(i)]; 109 return (c==null)?-1:c; 110 } 111 112 // (protected) copy this to r 113 function bnpCopyTo(r) { 114 for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; 115 r.t = this.t; 116 r.s = this.s; 117 } 118 119 // (protected) set from integer value x, -DV <= x < DV 120 function bnpFromInt(x) { 121 this.t = 1; 122 this.s = (x<0)?-1:0; 123 if(x > 0) this[0] = x; 124 else if(x < -1) this[0] = x+this.DV; 125 else this.t = 0; 126 } 127 128 // return bigint initialized to value 129 function nbv(i) { var r = nbi(); r.fromInt(i); return r; } 130 131 // (protected) set from string and radix 132 function bnpFromString(s,b) { 133 var k; 134 if(b == 16) k = 4; 135 else if(b == 8) k = 3; 136 else if(b == 256) k = 8; // byte array 137 else if(b == 2) k = 1; 138 else if(b == 32) k = 5; 139 else if(b == 4) k = 2; 140 else { this.fromRadix(s,b); return; } 141 this.t = 0; 142 this.s = 0; 143 var i = s.length, mi = false, sh = 0; 144 while(--i >= 0) { 145 var x = (k==8)?s[i]&0xff:intAt(s,i); 146 if(x < 0) { 147 if(s.charAt(i) == "-") mi = true; 148 continue; 149 } 150 mi = false; 151 if(sh == 0) 152 this[this.t++] = x; 153 else if(sh+k > this.DB) { 154 this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; 155 this[this.t++] = (x>>(this.DB-sh)); 156 } 157 else 158 this[this.t-1] |= x<<sh; 159 sh += k; 160 if(sh >= this.DB) sh -= this.DB; 161 } 162 if(k == 8 && (s[0]&0x80) != 0) { 163 this.s = -1; 164 if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; 165 } 166 this.clamp(); 167 if(mi) BigInteger.ZERO.subTo(this,this); 168 } 169 170 // (protected) clamp off excess high words 171 function bnpClamp() { 172 var c = this.s&this.DM; 173 while(this.t > 0 && this[this.t-1] == c) --this.t; 174 } 175 176 // (public) return string representation in given radix 177 function bnToString(b) { 178 if(this.s < 0) return "-"+this.negate().toString(b); 179 var k; 180 if(b == 16) k = 4; 181 else if(b == 8) k = 3; 182 else if(b == 2) k = 1; 183 else if(b == 32) k = 5; 184 else if(b == 4) k = 2; 185 else return this.toRadix(b); 186 var km = (1<<k)-1, d, m = false, r = "", i = this.t; 187 var p = this.DB-(i*this.DB)%k; 188 if(i-- > 0) { 189 if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } 190 while(i >= 0) { 191 if(p < k) { 192 d = (this[i]&((1<<p)-1))<<(k-p); 193 d |= this[--i]>>(p+=this.DB-k); 194 } 195 else { 196 d = (this[i]>>(p-=k))&km; 197 if(p <= 0) { p += this.DB; --i; } 198 } 199 if(d > 0) m = true; 200 if(m) r += int2char(d); 201 } 202 } 203 return m?r:"0"; 204 } 205 206 // (public) -this 207 function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } 208 209 // (public) |this| 210 function bnAbs() { return (this.s<0)?this.negate():this; } 211 212 // (public) return + if this > a, - if this < a, 0 if equal 213 function bnCompareTo(a) { 214 var r = this.s-a.s; 215 if(r != 0) return r; 216 var i = this.t; 217 r = i-a.t; 218 if(r != 0) return (this.s<0)?-r:r; 219 while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; 220 return 0; 221 } 222 223 // returns bit length of the integer x 224 function nbits(x) { 225 var r = 1, t; 226 if((t=x>>>16) != 0) { x = t; r += 16; } 227 if((t=x>>8) != 0) { x = t; r += 8; } 228 if((t=x>>4) != 0) { x = t; r += 4; } 229 if((t=x>>2) != 0) { x = t; r += 2; } 230 if((t=x>>1) != 0) { x = t; r += 1; } 231 return r; 232 } 233 234 // (public) return the number of bits in "this" 235 function bnBitLength() { 236 if(this.t <= 0) return 0; 237 return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); 238 } 239 240 // (protected) r = this << n*DB 241 function bnpDLShiftTo(n,r) { 242 var i; 243 for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; 244 for(i = n-1; i >= 0; --i) r[i] = 0; 245 r.t = this.t+n; 246 r.s = this.s; 247 } 248 249 // (protected) r = this >> n*DB 250 function bnpDRShiftTo(n,r) { 251 for(var i = n; i < this.t; ++i) r[i-n] = this[i]; 252 r.t = Math.max(this.t-n,0); 253 r.s = this.s; 254 } 255 256 // (protected) r = this << n 257 function bnpLShiftTo(n,r) { 258 var bs = n%this.DB; 259 var cbs = this.DB-bs; 260 var bm = (1<<cbs)-1; 261 var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; 262 for(i = this.t-1; i >= 0; --i) { 263 r[i+ds+1] = (this[i]>>cbs)|c; 264 c = (this[i]&bm)<<bs; 265 } 266 for(i = ds-1; i >= 0; --i) r[i] = 0; 267 r[ds] = c; 268 r.t = this.t+ds+1; 269 r.s = this.s; 270 r.clamp(); 271 } 272 273 // (protected) r = this >> n 274 function bnpRShiftTo(n,r) { 275 r.s = this.s; 276 var ds = Math.floor(n/this.DB); 277 if(ds >= this.t) { r.t = 0; return; } 278 var bs = n%this.DB; 279 var cbs = this.DB-bs; 280 var bm = (1<<bs)-1; 281 r[0] = this[ds]>>bs; 282 for(var i = ds+1; i < this.t; ++i) { 283 r[i-ds-1] |= (this[i]&bm)<<cbs; 284 r[i-ds] = this[i]>>bs; 285 } 286 if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; 287 r.t = this.t-ds; 288 r.clamp(); 289 } 290 291 // (protected) r = this - a 292 function bnpSubTo(a,r) { 293 var i = 0, c = 0, m = Math.min(a.t,this.t); 294 while(i < m) { 295 c += this[i]-a[i]; 296 r[i++] = c&this.DM; 297 c >>= this.DB; 298 } 299 if(a.t < this.t) { 300 c -= a.s; 301 while(i < this.t) { 302 c += this[i]; 303 r[i++] = c&this.DM; 304 c >>= this.DB; 305 } 306 c += this.s; 307 } 308 else { 309 c += this.s; 310 while(i < a.t) { 311 c -= a[i]; 312 r[i++] = c&this.DM; 313 c >>= this.DB; 314 } 315 c -= a.s; 316 } 317 r.s = (c<0)?-1:0; 318 if(c < -1) r[i++] = this.DV+c; 319 else if(c > 0) r[i++] = c; 320 r.t = i; 321 r.clamp(); 322 } 323 324 // (protected) r = this * a, r != this,a (HAC 14.12) 325 // "this" should be the larger one if appropriate. 326 function bnpMultiplyTo(a,r) { 327 var x = this.abs(), y = a.abs(); 328 var i = x.t; 329 r.t = i+y.t; 330 while(--i >= 0) r[i] = 0; 331 for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); 332 r.s = 0; 333 r.clamp(); 334 if(this.s != a.s) BigInteger.ZERO.subTo(r,r); 335 } 336 337 // (protected) r = this^2, r != this (HAC 14.16) 338 function bnpSquareTo(r) { 339 var x = this.abs(); 340 var i = r.t = 2*x.t; 341 while(--i >= 0) r[i] = 0; 342 for(i = 0; i < x.t-1; ++i) { 343 var c = x.am(i,x[i],r,2*i,0,1); 344 if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { 345 r[i+x.t] -= x.DV; 346 r[i+x.t+1] = 1; 347 } 348 } 349 if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); 350 r.s = 0; 351 r.clamp(); 352 } 353 354 // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) 355 // r != q, this != m. q or r may be null. 356 function bnpDivRemTo(m,q,r) { 357 var pm = m.abs(); 358 if(pm.t <= 0) return; 359 var pt = this.abs(); 360 if(pt.t < pm.t) { 361 if(q != null) q.fromInt(0); 362 if(r != null) this.copyTo(r); 363 return; 364 } 365 if(r == null) r = nbi(); 366 var y = nbi(), ts = this.s, ms = m.s; 367 var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus 368 if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } 369 else { pm.copyTo(y); pt.copyTo(r); } 370 var ys = y.t; 371 var y0 = y[ys-1]; 372 if(y0 == 0) return; 373 var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); 374 var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; 375 var i = r.t, j = i-ys, t = (q==null)?nbi():q; 376 y.dlShiftTo(j,t); 377 if(r.compareTo(t) >= 0) { 378 r[r.t++] = 1; 379 r.subTo(t,r); 380 } 381 BigInteger.ONE.dlShiftTo(ys,t); 382 t.subTo(y,y); // "negative" y so we can replace sub with am later 383 while(y.t < ys) y[y.t++] = 0; 384 while(--j >= 0) { 385 // Estimate quotient digit 386 var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); 387 if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out 388 y.dlShiftTo(j,t); 389 r.subTo(t,r); 390 while(r[i] < --qd) r.subTo(t,r); 391 } 392 } 393 if(q != null) { 394 r.drShiftTo(ys,q); 395 if(ts != ms) BigInteger.ZERO.subTo(q,q); 396 } 397 r.t = ys; 398 r.clamp(); 399 if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder 400 if(ts < 0) BigInteger.ZERO.subTo(r,r); 401 } 402 403 // (public) this mod a 404 function bnMod(a) { 405 var r = nbi(); 406 this.abs().divRemTo(a,null,r); 407 if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); 408 return r; 409 } 410 411 // Modular reduction using "classic" algorithm 412 function Classic(m) { this.m = m; } 413 function cConvert(x) { 414 if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); 415 else return x; 416 } 417 function cRevert(x) { return x; } 418 function cReduce(x) { x.divRemTo(this.m,null,x); } 419 function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 420 function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 421 422 Classic.prototype.convert = cConvert; 423 Classic.prototype.revert = cRevert; 424 Classic.prototype.reduce = cReduce; 425 Classic.prototype.mulTo = cMulTo; 426 Classic.prototype.sqrTo = cSqrTo; 427 428 // (protected) return "-1/this % 2^DB"; useful for Mont. reduction 429 // justification: 430 // xy == 1 (mod m) 431 // xy = 1+km 432 // xy(2-xy) = (1+km)(1-km) 433 // x[y(2-xy)] = 1-k^2m^2 434 // x[y(2-xy)] == 1 (mod m^2) 435 // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 436 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. 437 // JS multiply "overflows" differently from C/C++, so care is needed here. 438 function bnpInvDigit() { 439 if(this.t < 1) return 0; 440 var x = this[0]; 441 if((x&1) == 0) return 0; 442 var y = x&3; // y == 1/x mod 2^2 443 y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 444 y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 445 y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 446 // last step - calculate inverse mod DV directly; 447 // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints 448 y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits 449 // we really want the negative inverse, and -DV < y < DV 450 return (y>0)?this.DV-y:-y; 451 } 452 453 // Montgomery reduction 454 function Montgomery(m) { 455 this.m = m; 456 this.mp = m.invDigit(); 457 this.mpl = this.mp&0x7fff; 458 this.mph = this.mp>>15; 459 this.um = (1<<(m.DB-15))-1; 460 this.mt2 = 2*m.t; 461 } 462 463 // xR mod m 464 function montConvert(x) { 465 var r = nbi(); 466 x.abs().dlShiftTo(this.m.t,r); 467 r.divRemTo(this.m,null,r); 468 if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); 469 return r; 470 } 471 472 // x/R mod m 473 function montRevert(x) { 474 var r = nbi(); 475 x.copyTo(r); 476 this.reduce(r); 477 return r; 478 } 479 480 // x = x/R mod m (HAC 14.32) 481 function montReduce(x) { 482 while(x.t <= this.mt2) // pad x so am has enough room later 483 x[x.t++] = 0; 484 for(var i = 0; i < this.m.t; ++i) { 485 // faster way of calculating u0 = x[i]*mp mod DV 486 var j = x[i]&0x7fff; 487 var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; 488 // use am to combine the multiply-shift-add into one call 489 j = i+this.m.t; 490 x[j] += this.m.am(0,u0,x,i,0,this.m.t); 491 // propagate carry 492 while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } 493 } 494 x.clamp(); 495 x.drShiftTo(this.m.t,x); 496 if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 497 } 498 499 // r = "x^2/R mod m"; x != r 500 function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 501 502 // r = "xy/R mod m"; x,y != r 503 function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 504 505 Montgomery.prototype.convert = montConvert; 506 Montgomery.prototype.revert = montRevert; 507 Montgomery.prototype.reduce = montReduce; 508 Montgomery.prototype.mulTo = montMulTo; 509 Montgomery.prototype.sqrTo = montSqrTo; 510 511 // (protected) true iff this is even 512 function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } 513 514 // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) 515 function bnpExp(e,z) { 516 if(e > 0xffffffff || e < 1) return BigInteger.ONE; 517 var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; 518 g.copyTo(r); 519 while(--i >= 0) { 520 z.sqrTo(r,r2); 521 if((e&(1<<i)) > 0) z.mulTo(r2,g,r); 522 else { var t = r; r = r2; r2 = t; } 523 } 524 return z.revert(r); 525 } 526 527 // (public) this^e % m, 0 <= e < 2^32 528 function bnModPowInt(e,m) { 529 var z; 530 if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); 531 return this.exp(e,z); 532 } 533 534 // protected 535 BigInteger.prototype.copyTo = bnpCopyTo; 536 BigInteger.prototype.fromInt = bnpFromInt; 537 BigInteger.prototype.fromString = bnpFromString; 538 BigInteger.prototype.clamp = bnpClamp; 539 BigInteger.prototype.dlShiftTo = bnpDLShiftTo; 540 BigInteger.prototype.drShiftTo = bnpDRShiftTo; 541 BigInteger.prototype.lShiftTo = bnpLShiftTo; 542 BigInteger.prototype.rShiftTo = bnpRShiftTo; 543 BigInteger.prototype.subTo = bnpSubTo; 544 BigInteger.prototype.multiplyTo = bnpMultiplyTo; 545 BigInteger.prototype.squareTo = bnpSquareTo; 546 BigInteger.prototype.divRemTo = bnpDivRemTo; 547 BigInteger.prototype.invDigit = bnpInvDigit; 548 BigInteger.prototype.isEven = bnpIsEven; 549 BigInteger.prototype.exp = bnpExp; 550 551 // public 552 BigInteger.prototype.toString = bnToString; 553 BigInteger.prototype.negate = bnNegate; 554 BigInteger.prototype.abs = bnAbs; 555 BigInteger.prototype.compareTo = bnCompareTo; 556 BigInteger.prototype.bitLength = bnBitLength; 557 BigInteger.prototype.mod = bnMod; 558 BigInteger.prototype.modPowInt = bnModPowInt; 559 560 // "constants" 561 BigInteger.ZERO = nbv(0); 562 BigInteger.ONE = nbv(1); 563 564 // Copyright (c) 2005-2009 Tom Wu 565 // All Rights Reserved. 566 // See "LICENSE" for details. 567 568 // Extended JavaScript BN functions, required for RSA private ops. 569 570 // Version 1.1: new BigInteger("0", 10) returns "proper" zero 571 // Version 1.2: square() API, isProbablePrime fix 572 573 // (public) 574 function bnClone() { var r = nbi(); this.copyTo(r); return r; } 575 576 // (public) return value as integer 577 function bnIntValue() { 578 if(this.s < 0) { 579 if(this.t == 1) return this[0]-this.DV; 580 else if(this.t == 0) return -1; 581 } 582 else if(this.t == 1) return this[0]; 583 else if(this.t == 0) return 0; 584 // assumes 16 < DB < 32 585 return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; 586 } 587 588 // (public) return value as byte 589 function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } 590 591 // (public) return value as short (assumes DB>=16) 592 function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } 593 594 // (protected) return x s.t. r^x < DV 595 function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } 596 597 // (public) 0 if this == 0, 1 if this > 0 598 function bnSigNum() { 599 if(this.s < 0) return -1; 600 else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; 601 else return 1; 602 } 603 604 // (protected) convert to radix string 605 function bnpToRadix(b) { 606 if(b == null) b = 10; 607 if(this.signum() == 0 || b < 2 || b > 36) return "0"; 608 var cs = this.chunkSize(b); 609 var a = Math.pow(b,cs); 610 var d = nbv(a), y = nbi(), z = nbi(), r = ""; 611 this.divRemTo(d,y,z); 612 while(y.signum() > 0) { 613 r = (a+z.intValue()).toString(b).substr(1) + r; 614 y.divRemTo(d,y,z); 615 } 616 return z.intValue().toString(b) + r; 617 } 618 619 // (protected) convert from radix string 620 function bnpFromRadix(s,b) { 621 this.fromInt(0); 622 if(b == null) b = 10; 623 var cs = this.chunkSize(b); 624 var d = Math.pow(b,cs), mi = false, j = 0, w = 0; 625 for(var i = 0; i < s.length; ++i) { 626 var x = intAt(s,i); 627 if(x < 0) { 628 if(s.charAt(i) == "-" && this.signum() == 0) mi = true; 629 continue; 630 } 631 w = b*w+x; 632 if(++j >= cs) { 633 this.dMultiply(d); 634 this.dAddOffset(w,0); 635 j = 0; 636 w = 0; 637 } 638 } 639 if(j > 0) { 640 this.dMultiply(Math.pow(b,j)); 641 this.dAddOffset(w,0); 642 } 643 if(mi) BigInteger.ZERO.subTo(this,this); 644 } 645 646 // (protected) alternate constructor 647 function bnpFromNumber(a,b,c) { 648 if("number" == typeof b) { 649 // new BigInteger(int,int,RNG) 650 if(a < 2) this.fromInt(1); 651 else { 652 this.fromNumber(a,c); 653 if(!this.testBit(a-1)) // force MSB set 654 this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); 655 if(this.isEven()) this.dAddOffset(1,0); // force odd 656 while(!this.isProbablePrime(b)) { 657 this.dAddOffset(2,0); 658 if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); 659 } 660 } 661 } 662 else { 663 // new BigInteger(int,RNG) 664 var x = new Array(), t = a&7; 665 x.length = (a>>3)+1; 666 b.nextBytes(x); 667 if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; 668 this.fromString(x,256); 669 } 670 } 671 672 // (public) convert to bigendian byte array 673 function bnToByteArray() { 674 var i = this.t, r = new Array(); 675 r[0] = this.s; 676 var p = this.DB-(i*this.DB)%8, d, k = 0; 677 if(i-- > 0) { 678 if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) 679 r[k++] = d|(this.s<<(this.DB-p)); 680 while(i >= 0) { 681 if(p < 8) { 682 d = (this[i]&((1<<p)-1))<<(8-p); 683 d |= this[--i]>>(p+=this.DB-8); 684 } 685 else { 686 d = (this[i]>>(p-=8))&0xff; 687 if(p <= 0) { p += this.DB; --i; } 688 } 689 if((d&0x80) != 0) d |= -256; 690 if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; 691 if(k > 0 || d != this.s) r[k++] = d; 692 } 693 } 694 return r; 695 } 696 697 function bnEquals(a) { return(this.compareTo(a)==0); } 698 function bnMin(a) { return(this.compareTo(a)<0)?this:a; } 699 function bnMax(a) { return(this.compareTo(a)>0)?this:a; } 700 701 // (protected) r = this op a (bitwise) 702 function bnpBitwiseTo(a,op,r) { 703 var i, f, m = Math.min(a.t,this.t); 704 for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); 705 if(a.t < this.t) { 706 f = a.s&this.DM; 707 for(i = m; i < this.t; ++i) r[i] = op(this[i],f); 708 r.t = this.t; 709 } 710 else { 711 f = this.s&this.DM; 712 for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); 713 r.t = a.t; 714 } 715 r.s = op(this.s,a.s); 716 r.clamp(); 717 } 718 719 // (public) this & a 720 function op_and(x,y) { return x&y; } 721 function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } 722 723 // (public) this | a 724 function op_or(x,y) { return x|y; } 725 function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } 726 727 // (public) this ^ a 728 function op_xor(x,y) { return x^y; } 729 function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } 730 731 // (public) this & ~a 732 function op_andnot(x,y) { return x&~y; } 733 function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } 734 735 // (public) ~this 736 function bnNot() { 737 var r = nbi(); 738 for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; 739 r.t = this.t; 740 r.s = ~this.s; 741 return r; 742 } 743 744 // (public) this << n 745 function bnShiftLeft(n) { 746 var r = nbi(); 747 if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); 748 return r; 749 } 750 751 // (public) this >> n 752 function bnShiftRight(n) { 753 var r = nbi(); 754 if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); 755 return r; 756 } 757 758 // return index of lowest 1-bit in x, x < 2^31 759 function lbit(x) { 760 if(x == 0) return -1; 761 var r = 0; 762 if((x&0xffff) == 0) { x >>= 16; r += 16; } 763 if((x&0xff) == 0) { x >>= 8; r += 8; } 764 if((x&0xf) == 0) { x >>= 4; r += 4; } 765 if((x&3) == 0) { x >>= 2; r += 2; } 766 if((x&1) == 0) ++r; 767 return r; 768 } 769 770 // (public) returns index of lowest 1-bit (or -1 if none) 771 function bnGetLowestSetBit() { 772 for(var i = 0; i < this.t; ++i) 773 if(this[i] != 0) return i*this.DB+lbit(this[i]); 774 if(this.s < 0) return this.t*this.DB; 775 return -1; 776 } 777 778 // return number of 1 bits in x 779 function cbit(x) { 780 var r = 0; 781 while(x != 0) { x &= x-1; ++r; } 782 return r; 783 } 784 785 // (public) return number of set bits 786 function bnBitCount() { 787 var r = 0, x = this.s&this.DM; 788 for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); 789 return r; 790 } 791 792 // (public) true iff nth bit is set 793 function bnTestBit(n) { 794 var j = Math.floor(n/this.DB); 795 if(j >= this.t) return(this.s!=0); 796 return((this[j]&(1<<(n%this.DB)))!=0); 797 } 798 799 // (protected) this op (1<<n) 800 function bnpChangeBit(n,op) { 801 var r = BigInteger.ONE.shiftLeft(n); 802 this.bitwiseTo(r,op,r); 803 return r; 804 } 805 806 // (public) this | (1<<n) 807 function bnSetBit(n) { return this.changeBit(n,op_or); } 808 809 // (public) this & ~(1<<n) 810 function bnClearBit(n) { return this.changeBit(n,op_andnot); } 811 812 // (public) this ^ (1<<n) 813 function bnFlipBit(n) { return this.changeBit(n,op_xor); } 814 815 // (protected) r = this + a 816 function bnpAddTo(a,r) { 817 var i = 0, c = 0, m = Math.min(a.t,this.t); 818 while(i < m) { 819 c += this[i]+a[i]; 820 r[i++] = c&this.DM; 821 c >>= this.DB; 822 } 823 if(a.t < this.t) { 824 c += a.s; 825 while(i < this.t) { 826 c += this[i]; 827 r[i++] = c&this.DM; 828 c >>= this.DB; 829 } 830 c += this.s; 831 } 832 else { 833 c += this.s; 834 while(i < a.t) { 835 c += a[i]; 836 r[i++] = c&this.DM; 837 c >>= this.DB; 838 } 839 c += a.s; 840 } 841 r.s = (c<0)?-1:0; 842 if(c > 0) r[i++] = c; 843 else if(c < -1) r[i++] = this.DV+c; 844 r.t = i; 845 r.clamp(); 846 } 847 848 // (public) this + a 849 function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } 850 851 // (public) this - a 852 function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } 853 854 // (public) this * a 855 function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } 856 857 // (public) this^2 858 function bnSquare() { var r = nbi(); this.squareTo(r); return r; } 859 860 // (public) this / a 861 function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } 862 863 // (public) this % a 864 function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } 865 866 // (public) [this/a,this%a] 867 function bnDivideAndRemainder(a) { 868 var q = nbi(), r = nbi(); 869 this.divRemTo(a,q,r); 870 return new Array(q,r); 871 } 872 873 // (protected) this *= n, this >= 0, 1 < n < DV 874 function bnpDMultiply(n) { 875 this[this.t] = this.am(0,n-1,this,0,0,this.t); 876 ++this.t; 877 this.clamp(); 878 } 879 880 // (protected) this += n << w words, this >= 0 881 function bnpDAddOffset(n,w) { 882 if(n == 0) return; 883 while(this.t <= w) this[this.t++] = 0; 884 this[w] += n; 885 while(this[w] >= this.DV) { 886 this[w] -= this.DV; 887 if(++w >= this.t) this[this.t++] = 0; 888 ++this[w]; 889 } 890 } 891 892 // A "null" reducer 893 function NullExp() {} 894 function nNop(x) { return x; } 895 function nMulTo(x,y,r) { x.multiplyTo(y,r); } 896 function nSqrTo(x,r) { x.squareTo(r); } 897 898 NullExp.prototype.convert = nNop; 899 NullExp.prototype.revert = nNop; 900 NullExp.prototype.mulTo = nMulTo; 901 NullExp.prototype.sqrTo = nSqrTo; 902 903 // (public) this^e 904 function bnPow(e) { return this.exp(e,new NullExp()); } 905 906 // (protected) r = lower n words of "this * a", a.t <= n 907 // "this" should be the larger one if appropriate. 908 function bnpMultiplyLowerTo(a,n,r) { 909 var i = Math.min(this.t+a.t,n); 910 r.s = 0; // assumes a,this >= 0 911 r.t = i; 912 while(i > 0) r[--i] = 0; 913 var j; 914 for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); 915 for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); 916 r.clamp(); 917 } 918 919 // (protected) r = "this * a" without lower n words, n > 0 920 // "this" should be the larger one if appropriate. 921 function bnpMultiplyUpperTo(a,n,r) { 922 --n; 923 var i = r.t = this.t+a.t-n; 924 r.s = 0; // assumes a,this >= 0 925 while(--i >= 0) r[i] = 0; 926 for(i = Math.max(n-this.t,0); i < a.t; ++i) 927 r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); 928 r.clamp(); 929 r.drShiftTo(1,r); 930 } 931 932 // Barrett modular reduction 933 function Barrett(m) { 934 // setup Barrett 935 this.r2 = nbi(); 936 this.q3 = nbi(); 937 BigInteger.ONE.dlShiftTo(2*m.t,this.r2); 938 this.mu = this.r2.divide(m); 939 this.m = m; 940 } 941 942 function barrettConvert(x) { 943 if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); 944 else if(x.compareTo(this.m) < 0) return x; 945 else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } 946 } 947 948 function barrettRevert(x) { return x; } 949 950 // x = x mod m (HAC 14.42) 951 function barrettReduce(x) { 952 x.drShiftTo(this.m.t-1,this.r2); 953 if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } 954 this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); 955 this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); 956 while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); 957 x.subTo(this.r2,x); 958 while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); 959 } 960 961 // r = x^2 mod m; x != r 962 function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } 963 964 // r = x*y mod m; x,y != r 965 function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } 966 967 Barrett.prototype.convert = barrettConvert; 968 Barrett.prototype.revert = barrettRevert; 969 Barrett.prototype.reduce = barrettReduce; 970 Barrett.prototype.mulTo = barrettMulTo; 971 Barrett.prototype.sqrTo = barrettSqrTo; 972 973 // (public) this^e % m (HAC 14.85) 974 function bnModPow(e,m) { 975 var i = e.bitLength(), k, r = nbv(1), z; 976 if(i <= 0) return r; 977 else if(i < 18) k = 1; 978 else if(i < 48) k = 3; 979 else if(i < 144) k = 4; 980 else if(i < 768) k = 5; 981 else k = 6; 982 if(i < 8) 983 z = new Classic(m); 984 else if(m.isEven()) 985 z = new Barrett(m); 986 else 987 z = new Montgomery(m); 988 989 // precomputation 990 var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; 991 g[1] = z.convert(this); 992 if(k > 1) { 993 var g2 = nbi(); 994 z.sqrTo(g[1],g2); 995 while(n <= km) { 996 g[n] = nbi(); 997 z.mulTo(g2,g[n-2],g[n]); 998 n += 2; 999 } 1000 } 1001 1002 var j = e.t-1, w, is1 = true, r2 = nbi(), t; 1003 i = nbits(e[j])-1; 1004 while(j >= 0) { 1005 if(i >= k1) w = (e[j]>>(i-k1))&km; 1006 else { 1007 w = (e[j]&((1<<(i+1))-1))<<(k1-i); 1008 if(j > 0) w |= e[j-1]>>(this.DB+i-k1); 1009 } 1010 1011 n = k; 1012 while((w&1) == 0) { w >>= 1; --n; } 1013 if((i -= n) < 0) { i += this.DB; --j; } 1014 if(is1) { // ret == 1, don't bother squaring or multiplying it 1015 g[w].copyTo(r); 1016 is1 = false; 1017 } 1018 else { 1019 while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } 1020 if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } 1021 z.mulTo(r2,g[w],r); 1022 } 1023 1024 while(j >= 0 && (e[j]&(1<<i)) == 0) { 1025 z.sqrTo(r,r2); t = r; r = r2; r2 = t; 1026 if(--i < 0) { i = this.DB-1; --j; } 1027 } 1028 } 1029 return z.revert(r); 1030 } 1031 1032 // (public) gcd(this,a) (HAC 14.54) 1033 function bnGCD(a) { 1034 var x = (this.s<0)?this.negate():this.clone(); 1035 var y = (a.s<0)?a.negate():a.clone(); 1036 if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } 1037 var i = x.getLowestSetBit(), g = y.getLowestSetBit(); 1038 if(g < 0) return x; 1039 if(i < g) g = i; 1040 if(g > 0) { 1041 x.rShiftTo(g,x); 1042 y.rShiftTo(g,y); 1043 } 1044 while(x.signum() > 0) { 1045 if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); 1046 if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); 1047 if(x.compareTo(y) >= 0) { 1048 x.subTo(y,x); 1049 x.rShiftTo(1,x); 1050 } 1051 else { 1052 y.subTo(x,y); 1053 y.rShiftTo(1,y); 1054 } 1055 } 1056 if(g > 0) y.lShiftTo(g,y); 1057 return y; 1058 } 1059 1060 // (protected) this % n, n < 2^26 1061 function bnpModInt(n) { 1062 if(n <= 0) return 0; 1063 var d = this.DV%n, r = (this.s<0)?n-1:0; 1064 if(this.t > 0) 1065 if(d == 0) r = this[0]%n; 1066 else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; 1067 return r; 1068 } 1069 1070 // (public) 1/this % m (HAC 14.61) 1071 function bnModInverse(m) { 1072 var ac = m.isEven(); 1073 if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; 1074 var u = m.clone(), v = this.clone(); 1075 var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); 1076 while(u.signum() != 0) { 1077 while(u.isEven()) { 1078 u.rShiftTo(1,u); 1079 if(ac) { 1080 if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } 1081 a.rShiftTo(1,a); 1082 } 1083 else if(!b.isEven()) b.subTo(m,b); 1084 b.rShiftTo(1,b); 1085 } 1086 while(v.isEven()) { 1087 v.rShiftTo(1,v); 1088 if(ac) { 1089 if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } 1090 c.rShiftTo(1,c); 1091 } 1092 else if(!d.isEven()) d.subTo(m,d); 1093 d.rShiftTo(1,d); 1094 } 1095 if(u.compareTo(v) >= 0) { 1096 u.subTo(v,u); 1097 if(ac) a.subTo(c,a); 1098 b.subTo(d,b); 1099 } 1100 else { 1101 v.subTo(u,v); 1102 if(ac) c.subTo(a,c); 1103 d.subTo(b,d); 1104 } 1105 } 1106 if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; 1107 if(d.compareTo(m) >= 0) return d.subtract(m); 1108 if(d.signum() < 0) d.addTo(m,d); else return d; 1109 if(d.signum() < 0) return d.add(m); else return d; 1110 } 1111 1112 var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997]; 1113 var lplim = (1<<26)/lowprimes[lowprimes.length-1]; 1114 1115 // (public) test primality with certainty >= 1-.5^t 1116 function bnIsProbablePrime(t) { 1117 var i, x = this.abs(); 1118 if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { 1119 for(i = 0; i < lowprimes.length; ++i) 1120 if(x[0] == lowprimes[i]) return true; 1121 return false; 1122 } 1123 if(x.isEven()) return false; 1124 i = 1; 1125 while(i < lowprimes.length) { 1126 var m = lowprimes[i], j = i+1; 1127 while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; 1128 m = x.modInt(m); 1129 while(i < j) if(m%lowprimes[i++] == 0) return false; 1130 } 1131 return x.millerRabin(t); 1132 } 1133 1134 // (protected) true if probably prime (HAC 4.24, Miller-Rabin) 1135 function bnpMillerRabin(t) { 1136 var n1 = this.subtract(BigInteger.ONE); 1137 var k = n1.getLowestSetBit(); 1138 if(k <= 0) return false; 1139 var r = n1.shiftRight(k); 1140 t = (t+1)>>1; 1141 if(t > lowprimes.length) t = lowprimes.length; 1142 var a = nbi(); 1143 for(var i = 0; i < t; ++i) { 1144 //Pick bases at random, instead of starting at 2 1145 a.fromInt(lowprimes[Math.floor(Math.random()*lowprimes.length)]); 1146 var y = a.modPow(r,this); 1147 if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { 1148 var j = 1; 1149 while(j++ < k && y.compareTo(n1) != 0) { 1150 y = y.modPowInt(2,this); 1151 if(y.compareTo(BigInteger.ONE) == 0) return false; 1152 } 1153 if(y.compareTo(n1) != 0) return false; 1154 } 1155 } 1156 return true; 1157 } 1158 1159 // protected 1160 BigInteger.prototype.chunkSize = bnpChunkSize; 1161 BigInteger.prototype.toRadix = bnpToRadix; 1162 BigInteger.prototype.fromRadix = bnpFromRadix; 1163 BigInteger.prototype.fromNumber = bnpFromNumber; 1164 BigInteger.prototype.bitwiseTo = bnpBitwiseTo; 1165 BigInteger.prototype.changeBit = bnpChangeBit; 1166 BigInteger.prototype.addTo = bnpAddTo; 1167 BigInteger.prototype.dMultiply = bnpDMultiply; 1168 BigInteger.prototype.dAddOffset = bnpDAddOffset; 1169 BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; 1170 BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; 1171 BigInteger.prototype.modInt = bnpModInt; 1172 BigInteger.prototype.millerRabin = bnpMillerRabin; 1173 1174 // public 1175 BigInteger.prototype.clone = bnClone; 1176 BigInteger.prototype.intValue = bnIntValue; 1177 BigInteger.prototype.byteValue = bnByteValue; 1178 BigInteger.prototype.shortValue = bnShortValue; 1179 BigInteger.prototype.signum = bnSigNum; 1180 BigInteger.prototype.toByteArray = bnToByteArray; 1181 BigInteger.prototype.equals = bnEquals; 1182 BigInteger.prototype.min = bnMin; 1183 BigInteger.prototype.max = bnMax; 1184 BigInteger.prototype.and = bnAnd; 1185 BigInteger.prototype.or = bnOr; 1186 BigInteger.prototype.xor = bnXor; 1187 BigInteger.prototype.andNot = bnAndNot; 1188 BigInteger.prototype.not = bnNot; 1189 BigInteger.prototype.shiftLeft = bnShiftLeft; 1190 BigInteger.prototype.shiftRight = bnShiftRight; 1191 BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; 1192 BigInteger.prototype.bitCount = bnBitCount; 1193 BigInteger.prototype.testBit = bnTestBit; 1194 BigInteger.prototype.setBit = bnSetBit; 1195 BigInteger.prototype.clearBit = bnClearBit; 1196 BigInteger.prototype.flipBit = bnFlipBit; 1197 BigInteger.prototype.add = bnAdd; 1198 BigInteger.prototype.subtract = bnSubtract; 1199 BigInteger.prototype.multiply = bnMultiply; 1200 BigInteger.prototype.divide = bnDivide; 1201 BigInteger.prototype.remainder = bnRemainder; 1202 BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; 1203 BigInteger.prototype.modPow = bnModPow; 1204 BigInteger.prototype.modInverse = bnModInverse; 1205 BigInteger.prototype.pow = bnPow; 1206 BigInteger.prototype.gcd = bnGCD; 1207 BigInteger.prototype.isProbablePrime = bnIsProbablePrime; 1208 1209 // JSBN-specific extension 1210 BigInteger.prototype.square = bnSquare; 1211 1212 // Expose the Barrett function 1213 BigInteger.prototype.Barrett = Barrett 1214 1215 // BigInteger interfaces not implemented in jsbn: 1216 1217 // BigInteger(int signum, byte[] magnitude) 1218 // double doubleValue() 1219 // float floatValue() 1220 // int hashCode() 1221 // long longValue() 1222 // static BigInteger valueOf(long val) 1223 1224 // Random number generator - requires a PRNG backend, e.g. prng4.js 1225 1226 // For best results, put code like 1227 // <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'> 1228 // in your main HTML document. 1229 1230 var rng_state; 1231 var rng_pool; 1232 var rng_pptr; 1233 1234 // Mix in a 32-bit integer into the pool 1235 function rng_seed_int(x) { 1236 rng_pool[rng_pptr++] ^= x & 255; 1237 rng_pool[rng_pptr++] ^= (x >> 8) & 255; 1238 rng_pool[rng_pptr++] ^= (x >> 16) & 255; 1239 rng_pool[rng_pptr++] ^= (x >> 24) & 255; 1240 if(rng_pptr >= rng_psize) rng_pptr -= rng_psize; 1241 } 1242 1243 // Mix in the current time (w/milliseconds) into the pool 1244 function rng_seed_time() { 1245 rng_seed_int(new Date().getTime()); 1246 } 1247 1248 // Initialize the pool with junk if needed. 1249 if(rng_pool == null) { 1250 rng_pool = new Array(); 1251 rng_pptr = 0; 1252 var t; 1253 if(typeof window !== "undefined" && window.crypto) { 1254 if (window.crypto.getRandomValues) { 1255 // Use webcrypto if available 1256 var ua = new Uint8Array(32); 1257 window.crypto.getRandomValues(ua); 1258 for(t = 0; t < 32; ++t) 1259 rng_pool[rng_pptr++] = ua[t]; 1260 } 1261 else if(navigator.appName == "Netscape" && navigator.appVersion < "5") { 1262 // Extract entropy (256 bits) from NS4 RNG if available 1263 var z = window.crypto.random(32); 1264 for(t = 0; t < z.length; ++t) 1265 rng_pool[rng_pptr++] = z.charCodeAt(t) & 255; 1266 } 1267 } 1268 while(rng_pptr < rng_psize) { // extract some randomness from Math.random() 1269 t = Math.floor(65536 * Math.random()); 1270 rng_pool[rng_pptr++] = t >>> 8; 1271 rng_pool[rng_pptr++] = t & 255; 1272 } 1273 rng_pptr = 0; 1274 rng_seed_time(); 1275 //rng_seed_int(window.screenX); 1276 //rng_seed_int(window.screenY); 1277 } 1278 1279 function rng_get_byte() { 1280 if(rng_state == null) { 1281 rng_seed_time(); 1282 rng_state = prng_newstate(); 1283 rng_state.init(rng_pool); 1284 for(rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) 1285 rng_pool[rng_pptr] = 0; 1286 rng_pptr = 0; 1287 //rng_pool = null; 1288 } 1289 // TODO: allow reseeding after first request 1290 return rng_state.next(); 1291 } 1292 1293 function rng_get_bytes(ba) { 1294 var i; 1295 for(i = 0; i < ba.length; ++i) ba[i] = rng_get_byte(); 1296 } 1297 1298 function SecureRandom() {} 1299 1300 SecureRandom.prototype.nextBytes = rng_get_bytes; 1301 1302 // prng4.js - uses Arcfour as a PRNG 1303 1304 function Arcfour() { 1305 this.i = 0; 1306 this.j = 0; 1307 this.S = new Array(); 1308 } 1309 1310 // Initialize arcfour context from key, an array of ints, each from [0..255] 1311 function ARC4init(key) { 1312 var i, j, t; 1313 for(i = 0; i < 256; ++i) 1314 this.S[i] = i; 1315 j = 0; 1316 for(i = 0; i < 256; ++i) { 1317 j = (j + this.S[i] + key[i % key.length]) & 255; 1318 t = this.S[i]; 1319 this.S[i] = this.S[j]; 1320 this.S[j] = t; 1321 } 1322 this.i = 0; 1323 this.j = 0; 1324 } 1325 1326 function ARC4next() { 1327 var t; 1328 this.i = (this.i + 1) & 255; 1329 this.j = (this.j + this.S[this.i]) & 255; 1330 t = this.S[this.i]; 1331 this.S[this.i] = this.S[this.j]; 1332 this.S[this.j] = t; 1333 return this.S[(t + this.S[this.i]) & 255]; 1334 } 1335 1336 Arcfour.prototype.init = ARC4init; 1337 Arcfour.prototype.next = ARC4next; 1338 1339 // Plug in your RNG constructor here 1340 function prng_newstate() { 1341 return new Arcfour(); 1342 } 1343 1344 // Pool size must be a multiple of 4 and greater than 32. 1345 // An array of bytes the size of the pool will be passed to init() 1346 var rng_psize = 256; 1347 1348 BigInteger.SecureRandom = SecureRandom; 1349 BigInteger.BigInteger = BigInteger; 1350 if (typeof exports !== 'undefined') { 1351 exports = module.exports = BigInteger; 1352 } else { 1353 this.BigInteger = BigInteger; 1354 this.SecureRandom = SecureRandom; 1355 } 1356 1357 }).call(this);