l0bsterssg

node.js static responsive blog post generator
Log | Files | Refs | README

stan.js (9773B)


      1 /*
      2 Language: Stan
      3 Description: The Stan probabilistic programming language
      4 Author: Jeffrey B. Arnold <jeffrey.arnold@gmail.com>
      5 Website: http://mc-stan.org/
      6 Category: scientific
      7 */
      8 
      9 function stan(hljs) {
     10   // variable names cannot conflict with block identifiers
     11   var BLOCKS = [
     12     'functions',
     13     'model',
     14     'data',
     15     'parameters',
     16     'quantities',
     17     'transformed',
     18     'generated'
     19   ];
     20   var STATEMENTS = [
     21     'for',
     22     'in',
     23     'if',
     24     'else',
     25     'while',
     26     'break',
     27     'continue',
     28     'return'
     29   ];
     30   var SPECIAL_FUNCTIONS = [
     31     'print',
     32     'reject',
     33     'increment_log_prob|10',
     34     'integrate_ode|10',
     35     'integrate_ode_rk45|10',
     36     'integrate_ode_bdf|10',
     37     'algebra_solver'
     38   ];
     39   var VAR_TYPES = [
     40     'int',
     41     'real',
     42     'vector',
     43     'ordered',
     44     'positive_ordered',
     45     'simplex',
     46     'unit_vector',
     47     'row_vector',
     48     'matrix',
     49     'cholesky_factor_corr|10',
     50     'cholesky_factor_cov|10',
     51     'corr_matrix|10',
     52     'cov_matrix|10',
     53     'void'
     54   ];
     55   var FUNCTIONS = [
     56     'Phi', 'Phi_approx', 'abs', 'acos', 'acosh', 'algebra_solver', 'append_array',
     57     'append_col', 'append_row', 'asin', 'asinh', 'atan', 'atan2', 'atanh',
     58     'bernoulli_cdf', 'bernoulli_lccdf', 'bernoulli_lcdf', 'bernoulli_logit_lpmf',
     59     'bernoulli_logit_rng', 'bernoulli_lpmf', 'bernoulli_rng', 'bessel_first_kind',
     60     'bessel_second_kind', 'beta_binomial_cdf', 'beta_binomial_lccdf',
     61     'beta_binomial_lcdf', 'beta_binomial_lpmf', 'beta_binomial_rng', 'beta_cdf',
     62     'beta_lccdf', 'beta_lcdf', 'beta_lpdf', 'beta_rng', 'binary_log_loss',
     63     'binomial_cdf', 'binomial_coefficient_log', 'binomial_lccdf', 'binomial_lcdf',
     64     'binomial_logit_lpmf', 'binomial_lpmf', 'binomial_rng', 'block',
     65     'categorical_logit_lpmf', 'categorical_logit_rng', 'categorical_lpmf',
     66     'categorical_rng', 'cauchy_cdf', 'cauchy_lccdf', 'cauchy_lcdf', 'cauchy_lpdf',
     67     'cauchy_rng', 'cbrt', 'ceil', 'chi_square_cdf', 'chi_square_lccdf',
     68     'chi_square_lcdf', 'chi_square_lpdf', 'chi_square_rng', 'cholesky_decompose',
     69     'choose', 'col', 'cols', 'columns_dot_product', 'columns_dot_self', 'cos',
     70     'cosh', 'cov_exp_quad', 'crossprod', 'csr_extract_u', 'csr_extract_v',
     71     'csr_extract_w', 'csr_matrix_times_vector', 'csr_to_dense_matrix',
     72     'cumulative_sum', 'determinant', 'diag_matrix', 'diag_post_multiply',
     73     'diag_pre_multiply', 'diagonal', 'digamma', 'dims', 'dirichlet_lpdf',
     74     'dirichlet_rng', 'distance', 'dot_product', 'dot_self',
     75     'double_exponential_cdf', 'double_exponential_lccdf', 'double_exponential_lcdf',
     76     'double_exponential_lpdf', 'double_exponential_rng', 'e', 'eigenvalues_sym',
     77     'eigenvectors_sym', 'erf', 'erfc', 'exp', 'exp2', 'exp_mod_normal_cdf',
     78     'exp_mod_normal_lccdf', 'exp_mod_normal_lcdf', 'exp_mod_normal_lpdf',
     79     'exp_mod_normal_rng', 'expm1', 'exponential_cdf', 'exponential_lccdf',
     80     'exponential_lcdf', 'exponential_lpdf', 'exponential_rng', 'fabs',
     81     'falling_factorial', 'fdim', 'floor', 'fma', 'fmax', 'fmin', 'fmod',
     82     'frechet_cdf', 'frechet_lccdf', 'frechet_lcdf', 'frechet_lpdf', 'frechet_rng',
     83     'gamma_cdf', 'gamma_lccdf', 'gamma_lcdf', 'gamma_lpdf', 'gamma_p', 'gamma_q',
     84     'gamma_rng', 'gaussian_dlm_obs_lpdf', 'get_lp', 'gumbel_cdf', 'gumbel_lccdf',
     85     'gumbel_lcdf', 'gumbel_lpdf', 'gumbel_rng', 'head', 'hypergeometric_lpmf',
     86     'hypergeometric_rng', 'hypot', 'inc_beta', 'int_step', 'integrate_ode',
     87     'integrate_ode_bdf', 'integrate_ode_rk45', 'inv', 'inv_Phi',
     88     'inv_chi_square_cdf', 'inv_chi_square_lccdf', 'inv_chi_square_lcdf',
     89     'inv_chi_square_lpdf', 'inv_chi_square_rng', 'inv_cloglog', 'inv_gamma_cdf',
     90     'inv_gamma_lccdf', 'inv_gamma_lcdf', 'inv_gamma_lpdf', 'inv_gamma_rng',
     91     'inv_logit', 'inv_sqrt', 'inv_square', 'inv_wishart_lpdf', 'inv_wishart_rng',
     92     'inverse', 'inverse_spd', 'is_inf', 'is_nan', 'lbeta', 'lchoose', 'lgamma',
     93     'lkj_corr_cholesky_lpdf', 'lkj_corr_cholesky_rng', 'lkj_corr_lpdf',
     94     'lkj_corr_rng', 'lmgamma', 'lmultiply', 'log', 'log10', 'log1m', 'log1m_exp',
     95     'log1m_inv_logit', 'log1p', 'log1p_exp', 'log2', 'log_determinant',
     96     'log_diff_exp', 'log_falling_factorial', 'log_inv_logit', 'log_mix',
     97     'log_rising_factorial', 'log_softmax', 'log_sum_exp', 'logistic_cdf',
     98     'logistic_lccdf', 'logistic_lcdf', 'logistic_lpdf', 'logistic_rng', 'logit',
     99     'lognormal_cdf', 'lognormal_lccdf', 'lognormal_lcdf', 'lognormal_lpdf',
    100     'lognormal_rng', 'machine_precision', 'matrix_exp', 'max', 'mdivide_left_spd',
    101     'mdivide_left_tri_low', 'mdivide_right_spd', 'mdivide_right_tri_low', 'mean',
    102     'min', 'modified_bessel_first_kind', 'modified_bessel_second_kind',
    103     'multi_gp_cholesky_lpdf', 'multi_gp_lpdf', 'multi_normal_cholesky_lpdf',
    104     'multi_normal_cholesky_rng', 'multi_normal_lpdf', 'multi_normal_prec_lpdf',
    105     'multi_normal_rng', 'multi_student_t_lpdf', 'multi_student_t_rng',
    106     'multinomial_lpmf', 'multinomial_rng', 'multiply_log',
    107     'multiply_lower_tri_self_transpose', 'neg_binomial_2_cdf',
    108     'neg_binomial_2_lccdf', 'neg_binomial_2_lcdf', 'neg_binomial_2_log_lpmf',
    109     'neg_binomial_2_log_rng', 'neg_binomial_2_lpmf', 'neg_binomial_2_rng',
    110     'neg_binomial_cdf', 'neg_binomial_lccdf', 'neg_binomial_lcdf',
    111     'neg_binomial_lpmf', 'neg_binomial_rng', 'negative_infinity', 'normal_cdf',
    112     'normal_lccdf', 'normal_lcdf', 'normal_lpdf', 'normal_rng', 'not_a_number',
    113     'num_elements', 'ordered_logistic_lpmf', 'ordered_logistic_rng', 'owens_t',
    114     'pareto_cdf', 'pareto_lccdf', 'pareto_lcdf', 'pareto_lpdf', 'pareto_rng',
    115     'pareto_type_2_cdf', 'pareto_type_2_lccdf', 'pareto_type_2_lcdf',
    116     'pareto_type_2_lpdf', 'pareto_type_2_rng', 'pi', 'poisson_cdf', 'poisson_lccdf',
    117     'poisson_lcdf', 'poisson_log_lpmf', 'poisson_log_rng', 'poisson_lpmf',
    118     'poisson_rng', 'positive_infinity', 'pow', 'print', 'prod', 'qr_Q', 'qr_R',
    119     'quad_form', 'quad_form_diag', 'quad_form_sym', 'rank', 'rayleigh_cdf',
    120     'rayleigh_lccdf', 'rayleigh_lcdf', 'rayleigh_lpdf', 'rayleigh_rng', 'reject',
    121     'rep_array', 'rep_matrix', 'rep_row_vector', 'rep_vector', 'rising_factorial',
    122     'round', 'row', 'rows', 'rows_dot_product', 'rows_dot_self',
    123     'scaled_inv_chi_square_cdf', 'scaled_inv_chi_square_lccdf',
    124     'scaled_inv_chi_square_lcdf', 'scaled_inv_chi_square_lpdf',
    125     'scaled_inv_chi_square_rng', 'sd', 'segment', 'sin', 'singular_values', 'sinh',
    126     'size', 'skew_normal_cdf', 'skew_normal_lccdf', 'skew_normal_lcdf',
    127     'skew_normal_lpdf', 'skew_normal_rng', 'softmax', 'sort_asc', 'sort_desc',
    128     'sort_indices_asc', 'sort_indices_desc', 'sqrt', 'sqrt2', 'square',
    129     'squared_distance', 'step', 'student_t_cdf', 'student_t_lccdf',
    130     'student_t_lcdf', 'student_t_lpdf', 'student_t_rng', 'sub_col', 'sub_row',
    131     'sum', 'tail', 'tan', 'tanh', 'target', 'tcrossprod', 'tgamma', 'to_array_1d',
    132     'to_array_2d', 'to_matrix', 'to_row_vector', 'to_vector', 'trace',
    133     'trace_gen_quad_form', 'trace_quad_form', 'trigamma', 'trunc', 'uniform_cdf',
    134     'uniform_lccdf', 'uniform_lcdf', 'uniform_lpdf', 'uniform_rng', 'variance',
    135     'von_mises_lpdf', 'von_mises_rng', 'weibull_cdf', 'weibull_lccdf',
    136     'weibull_lcdf', 'weibull_lpdf', 'weibull_rng', 'wiener_lpdf', 'wishart_lpdf',
    137     'wishart_rng'
    138   ];
    139   var DISTRIBUTIONS = [
    140     'bernoulli', 'bernoulli_logit', 'beta', 'beta_binomial', 'binomial',
    141     'binomial_logit', 'categorical', 'categorical_logit', 'cauchy', 'chi_square',
    142     'dirichlet', 'double_exponential', 'exp_mod_normal', 'exponential', 'frechet',
    143     'gamma', 'gaussian_dlm_obs', 'gumbel', 'hypergeometric', 'inv_chi_square',
    144     'inv_gamma', 'inv_wishart', 'lkj_corr', 'lkj_corr_cholesky', 'logistic',
    145     'lognormal', 'multi_gp', 'multi_gp_cholesky', 'multi_normal',
    146     'multi_normal_cholesky', 'multi_normal_prec', 'multi_student_t', 'multinomial',
    147     'neg_binomial', 'neg_binomial_2', 'neg_binomial_2_log', 'normal',
    148     'ordered_logistic', 'pareto', 'pareto_type_2', 'poisson', 'poisson_log',
    149     'rayleigh', 'scaled_inv_chi_square', 'skew_normal', 'student_t', 'uniform',
    150     'von_mises', 'weibull', 'wiener', 'wishart'
    151   ];
    152 
    153   return {
    154     name: 'Stan',
    155     aliases: ['stanfuncs'],
    156     keywords: {
    157       $pattern: hljs.IDENT_RE,
    158       title: BLOCKS.join(' '),
    159       keyword: STATEMENTS.concat(VAR_TYPES).concat(SPECIAL_FUNCTIONS).join(' '),
    160       built_in: FUNCTIONS.join(' ')
    161     },
    162     contains: [
    163       hljs.C_LINE_COMMENT_MODE,
    164       hljs.COMMENT(
    165         /#/,
    166         /$/,
    167         {
    168           relevance: 0,
    169           keywords: {
    170             'meta-keyword': 'include'
    171           }
    172         }
    173       ),
    174       hljs.COMMENT(
    175         /\/\*/,
    176         /\*\//,
    177         {
    178           relevance: 0,
    179           // highlight doc strings mentioned in Stan reference
    180           contains: [
    181             {
    182               className: 'doctag',
    183               begin: /@(return|param)/
    184             }
    185           ]
    186         }
    187       ),
    188       {
    189         // hack: in range constraints, lower must follow "<"
    190         begin: /<\s*lower\s*=/,
    191         keywords: 'lower'
    192       },
    193       {
    194         // hack: in range constraints, upper must follow either , or <
    195         // <lower = ..., upper = ...> or <upper = ...>
    196         begin: /[<,]\s*upper\s*=/,
    197         keywords: 'upper'
    198       },
    199       {
    200         className: 'keyword',
    201         begin: /\btarget\s*\+=/,
    202         relevance: 10
    203       },
    204       {
    205         begin: '~\\s*(' + hljs.IDENT_RE + ')\\s*\\(',
    206         keywords: DISTRIBUTIONS.join(' ')
    207       },
    208       {
    209         className: 'number',
    210         variants: [
    211           {
    212             begin: /\b\d+(?:\.\d*)?(?:[eE][+-]?\d+)?/
    213           },
    214           {
    215             begin: /\.\d+(?:[eE][+-]?\d+)?\b/
    216           }
    217         ],
    218         relevance: 0
    219       },
    220       {
    221         className: 'string',
    222         begin: '"',
    223         end: '"',
    224         relevance: 0
    225       }
    226     ]
    227   }
    228 }
    229 
    230 module.exports = stan;